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We study an inhomogeneous sandpile model in which two different toppling rules are defined. For any site
only one rule is applied corresponding to either the Bak, Tang, and Wiesenfeld model �P. Bak, C. Tang, and K.
Wiesenfeld, Phys. Rev. Lett. 59, 381 �1987�� or the Manna two-state sandpile model �S. S. Manna, J. Phys. A
24, L363 �1991��. A parameter c is introduced which describes a density of sites which are randomly deployed
and where the stochastic Manna rules are applied. The results show that the avalanche area exponent �a,
avalanche size exponent �s, and capacity fractal dimension Ds depend on the density c. A crossover from
multifractal scaling of the Bak, Tang, and Wiesenfeld model �c=0� to finite-size scaling was found. The critical
density c is found to be in the interval 0�c�0.01. These results demonstrate that local dynamical rules are
important and can change the global properties of the model.
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I. INTRODUCTION

Bak, Tang, and Wiesenfeld �1� �BTW� introduced a con-
cept of self-organized criticality �SOC� as a common feature
of different dynamical systems where the power-law tempo-
ral or spatial correlations are extended over several decades.
Dynamical systems with many interacting degrees of free-
dom and with short range couplings naturally evolve into a
critical state through a self-organized process. They proposed
a simple cellular automaton with deterministic rules, which
is known as a sandpile model, to demonstrate this phenom-
enon. In this model the relaxation rules are conservative, no
dissipation takes place during relaxation, and correspond to a
nonlinear diffusion equation �1�. Generally, the sandpile
model is represented by a d-dimensional hypercube of the
finite linear size L. Its boundaries are open and allow an
energy dissipation, which takes place only at the boundaries.

Manna proposed a two-state version of the sandpile model
�2� where no more than one particle is allowed to be at a site
in the stationary state. If one particle is added to a randomly
chosen site, then relaxation starts depending on the occu-
pancy of the site. If the site is empty, a particle is launched.
In the case when the site is not empty, a hard core interaction
throws the particles out from the site and the particles are
redistributed in a random manner among its neighbors. All
sites affected by this redistribution create an avalanche. An
avalanche is stopped if any site reached the stationary state,
i.e., no more than one particle occupies a site.

The first systematic study of scaling properties, universal-
ity, and classification of deterministic sandpile models was
carried out by Kadanoff et al. �3�. Using numerical simula-
tions and by varying the underlying microscopic rules which
describe how an avalanche is generated they investigated
whether different models have the same universal properties.
Applying finite-size scaling �FSS� and multifractal scaling
techniques they studied how a finite size of the system af-
fects scaling properties.

The real-space renormalization group calculations �4�
suggested that deterministic �1� and stochastic �2� sandpile

models belong to the same universality class. On the other
hand, many numerical results �5–9� show clearly two differ-
ent universality classes. They do not confirm the hypothesis
that small modifications in the dynamical rules of the models
do not change the universality class, presented by Chessa et
al. �10�.

This study was motivated by the results published by
Tebaldi et al. �11� and Stella and Menech �12� where a mul-
tifractal scaling of an avalanche size distribution of the BTW
model was demonstrated. They assume that a multifractal
character for SOC models like the BTW model is a crucial
step towards the solution of universality issues. By applying
the moment analysis they found FSS for the two-state Manna
model �12�. Based on these results they conclude that the
two-dimensional �2D� BTW model and the Manna model
belong to qualitatively different universality classes. This as-
sumption was confirmed recently �13,14�, where a precise
toppling balance has been investigated in more detail.

In this paper we report the results of disturbing the dy-
namics of the BTW model using stochastic Manna sites
which are randomly deployed. They can introduce stochastic
events during an avalanche propagation. Our model was de-
rived from the inhomogeneous sandpile model �15� in which
two different deterministic toppling rules were defined. In
the proposed model the first toppling rule corresponds to the
BTW model �1� and the second rule is now stochastic and
corresponds to the two-state Manna model �2�. The model is
similar to that in Ref. �14�, however, we applied the original
toppling rules of the listed sandpile models.

The paper is organized as follows. The inhomogeneous
sandpile model is introduced in Sec. II. The avalanche scal-
ing exponents, capacity fractal dimensions, and crossover
from multifractal to FSS are investigated with numerical
simulations and the results are presented in Sec. III. The Sec.
IV is devoted to a discussion which is followed by conclu-
sions in Sec. V.

II. MATHEMATICAL MODEL

We consider a d-dimensional hypercubic lattice of linear
size L, and a notation presented by Ben-Hur et al. �7� is*Electronic address: jcernak@kosice.upjs.sk

PHYSICAL REVIEW E 73, 066125 �2006�

1539-3755/2006/73�6�/066125�7� ©2006 The American Physical Society066125-1

http://dx.doi.org/10.1103/PhysRevE.73.066125


followed to define a sandpile model. Each site i has assigned
a dynamical variable E�i� that generally represents a physical
quantity such as energy, grain density, stress, etc. A configu-
ration �E�i�� is classified as stable if for all sites E�i��Ec,
where Ec is a threshold value. We note that the two-state
Manna model �2� has no threshold Ec. The Manna model has
defined a hard core repulsion interaction among different
particles at the same position. This hard core repulsion inter-
action can be described by a threshold where the threshold
value Ec=2 is assigned to any site. In our inhomogeneous
sandpile model, the threshold values Ec depend on the site
position i, Ec�i� �15�. The conditions for a stationary state, a
stable configuration �E�i�� �no avalanche�, are now E�i�
�Ec�i�, where the threshold Ec�i� at the site i was randomly
chosen from two allowed values

Ec�i� = �Ec
I = 4

Ec
II = 2.

� �1�

For any site i the threshold Ec�i� �Eq. �1�� is defined in such
a manner that n randomly chosen sites have the value Ec

II and
the remaining Ld-n sites have the value Ec

I . The density of
sites with the threshold value Ec

II is denoted c, and c=n /Ld.
Let us assume that a stable configuration �E�j�� is given,

and then we select a site i at random and increase E�i� by
some amount �E. We now consider �E=1 for any site. When
an unstable configuration is reached, E�i��Ec�i�, a relax-
ation takes place. An unstable site i lowers its energy, that is
distributed among the neighbor sites. The directions to the
neighbor sites are defined by the vectors e1= �0,1�, e2= �0,
−1�, e3= �1,0�, and e4= �−1,0�. The relaxation is defined by
the following rules

E�i� → E�i� − 	
e

�E�i� , �2�

E�i + e� → E�i + e� + �E�e� , �3�

	
e

�E�e� = Ec�i� , �4�

e = ��e1,e2,e3,e4� if Ec�i� = Ec
I

�e�,e	,� if Ec�i� = Ec
II,
� �5�

where e is a set of vectors from the site i to its neighbors.
The indexes � and 	 are integers 1, 2, 3, and 4 randomly
chosen at any relaxation. The neighbors that receive the en-
ergy can became unstable and topple, thus generating an ava-
lanche. The distribution of energy is described by Eqs. �2�
and �3�, we added additional rules Eqs. �4� and �5� which
specify the manner how the energy is distributed depending
on the position i, threshold Ec�i� �Eq. �4��, and corresponding
sandpile model �Eq. �5��. The relaxation rules Eqs. �2�–�5�
are applied until that moment when a new stable configura-
tion is reached again, for all sites E�i��Ec�i�. Obviously,
during one avalanche an arbitrary unstable site i can transfer
the energy Ec�i� a few times to became stable, E�i��Ec�i�. A
d-dimensional lattice has open boundaries so added energy

can flow outside the system, and an energy dissipation takes
place only at the boundaries.

This model has been designed to enable a well defined
change between two well known nondirected sandpile mod-
els: deterministic �1� and stochastic �2� �nondirected only on
average� similarly as in Ref. �13�. The model belongs to the
critical height models with conservative relaxation rules and
with undirected energy transfer where the two thresholds are
randomly frozen. It can be characterized as a sandpile with a
possibility to modify its scaling behaviors.

III. RESULTS

We shall report the results obtained using numerical simu-
lation of the conservative, undirected, critical height sandpile
model defined by Eqs. �2�–�5�. The simulations were carried
out for the following parameters: d=2, two-dimensional lat-
tice of linear sizes L=256, 512, and 1024, randomly added
energy �E=1, two thresholds either Ec

I =4 or Ec
II=2, and with

density of sites with threshold Ec
II in the interval 0
c
1. In

our simulations we have used the density c as a model pa-
rameter. For densities of stochastic sites c=0 and 1 the
model behaves as the BTW model �1� and Manna model �2�,
respectively, which are both considered to be Abelian �16�.

Avalanches can be characterized by such properties as
their size, area, lifetime, linear size, and perimeter. We con-
centrate only on a minimal number of parameters which are
necessary to demonstrate the investigated phenomena: the
avalanche area a and avalanche size s. Here the avalanche
area a is the number of lattice sites that have relaxed at least
once during the avalanche. The avalanche size s is the total
number of relaxations that occurred during the avalanche.
The probability distributions of these variables are usually
described as power laws with cutoff

P�x� = x−�xF�x/xc� , �6�

where x=a ,s. When the system size L goes to infinity, the
cutoff xc diverges as xc
LDx. If we assume FSS, then the set
of exponents ��x ,Dx� from Eq. �6� defines the universality
class of the model �10�.

The avalanche area probability distribution P�a� and ava-
lanche size probability distributions P�s� have been analyzed
at finite lattice sizes L=256, 512, and 1024. It is expected
that these distributions follow a power-law P�x�
x�x �Eq.
�6��. For any lattice size L and density c the corresponding
scaling exponents �x,L�c� were determined. The scaling ex-
ponents found in the numerical simulations for the largest
lattice size L=1024 and for selected densities c are presented
in Table I. It is evident that the exponents are increasing with

TABLE I. The scaling exponents �x,L=1024�c� for the finite lattice
size L=1024 and selected densities in the interval 0
c
1. The
statistical errors are ±0.001.

Density c 0 0.01 0.10 0.50 1

�a,L=1024 1.131 1.291 1.315 1.338

�s,L=1024 1.137 1.240 1.263 1.266 1.283
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c in the interval 0�c�0.1 and then for densities c�0.1
they are almost constant.

The scaling exponents �x,L show a finite-size effect when
the lattice size L is changed. Their dependences on lattice
sizes L are approximated by a formula proposed by Manna
�17�

x = xL→� −
const.

ln�L�
. �7�

This approximation was used to extrapolate the scaling ex-
ponents �x,L→� for the infinite lattice L→�.

The avalanche size probability distributions P�s� obey the
power-law dependence for any density c. The corresponding
scaling exponents �s,L→��c� are shown in the Fig. 1. In the
range of densities 0.01
c
0.1 these scaling exponents de-
crease from �s,L→��0.01�=1.37±0.025 to �s,L→��0.1�
=1.29±0.025 and then, for higher densities c�0.1, are al-
most constant.

The avalanche area scaling exponents �a,L→� show a more
complex dependence on the density c. For densities 0.09

c
0.5 they decrease from �a,L→��0.09�=1.49±0.025 to
�a,L→��0.5�=1.38±0.025, then for higher densities c�0.5
the exponents �a,L→��c� are almost constant. It was observed
that for densities 0.01
c
0.09 the avalanche area distribu-
tions P�a� do not follow exactly a power-law dependence as
it is expected from Eq. �6�. Therefore, the exponents
�a,L→��c� from this density interval are not included in Fig.
1. One typical example is shown in Fig. 2 where the density
of random toppling sites is c=0.01 and the lattice size is L
=1024. The double-log plot of area distribution function
P�a� clearly shows that a possible approximation function is
not a straight line which must correspond to the simple
power-law dependence.

For the two well known sandpile models, BTW �c=0� and
Manna �c=1� the scaling exponents �a,L→��0�=1.26,
�s,L→��0�=1.23, �a,L→��1�=1.36, and �s,L→��1�=1.27 were
found. In addition, for all densities c �see Fig. 1� the relation
�a,L→��c���s,L→��c� is valid.

The scaling exponents �x,L as functions of the lattice size
L show a finite-size scaling effect �Eq. �7��. An exact deter-
mination of scaling exponents �x,L→� from numerical experi-
ments is therefore a difficult task. A method was introduced
�6� to increase the numerical accuracy of the exponents
based on their direct determination. We found that the
method gives slightly larger exponents than a simple ex-
trapolation of Eq. �7�. However, the exponents �s do not
fluctuate around their mean values as it was observed in the
paper �6�. Our error bars were larger, therefore we have to
repeat this analysis again in more details.

Tebaldi et al. �11� found that in the BTW model the ava-
lanche area distributions P�a� show FSS and avalanche size
distribution P�s� scale as a multifractal. To describe these
scaling properties rather a multifractal spectrum f�� vs 
than the single scaling exponent �s �Eq. �6�� is necessary.
Thus, the scaling exponent �s loses the importance and is
replaced by a spectrum of exponents. Despite this fact, the
avalanche size scaling exponents �s,L→��0� are determined.
They enable a comparison with the previous results, since
the whole point is that the exponent �s,L→��0� does not exist.
The recent studies �11,12� led us to analyze the multifractal
properties of the model given by Eqs. �2�–�5� for various
densities c. To determine the multifractal spectra a method
presented in the paper �12� was useful. There, for any finite-
size lattices L, the quantities x�q ,L�= �log�x�xq� / �log�L�
��xq�� and �x�q ,L�
 log��xq�� / log�L� were computed. It
was observed that x�q ,L� and �x�q ,L� show a finite-size
dependence on the system size L, which is well approxi-
mated by Eq. �7� and this relation was used to extrapolate
L→� quantities. Based on the Legendre structure relating fx
to �x, a parametric representation of fx�x� by plotting
fx�q�=�x�q�−x�q�q versus x�q� can be obtained �12�.

Some significant spectra of fx�x ,c� extrapolated for an
infinite lattice size L→� are shown for illustration in Fig. 3.
The fx�x ,c� values were determined for the parameter q in
the range −3.5�q�3.5 and they are limited by errors about
±0.08, similarly as in Ref. �12�. We have observed that if
fx�x ,c� spectra are computed for all avalanches where a

FIG. 1. �Color online� The avalanche area and size scaling ex-
ponents �a,L→� and �s,L→� are approximated for the infinite lattice
size L→�. The exponents depend on the density c of Manna sites.

FIG. 2. �Color online� The avalanche area distribution P�a� does
not follow exactly a power-law function. The parameters used in the
numerical simulation were: density c=0.01 and linear lattice size
L=1024.

INHOMOGENEOUS SANDPILE MODEL: CROSSOVER¼ PHYSICAL REVIEW E 73, 066125 �2006�

066125-3



�50 then the errors of fx�x ,c� are ±0.05. The multifractal
scaling of the avalanche size probability distribution P�s�
and FSS of avalanche area probability distribution P�a� were
found at density c=0 �see Fig. 3�a��. The avalanche probabil-

ity distributions P�x� show FSS for densities c=0.01 Fig.
3�b�, and for c=0.95 Fig. 3�c� which is close to the Manna
model �c=1�. The spectra for c=0 and 1 agree well with the
previous results �12�. It was found that the multifractal scal-
ing of P�s� was destroyed �Fig. 3�b�� at a relatively small
density of Manna sites 0�c�0.01.

Stella et al. �12� claim that if probability distributions
P�x� satisfied FSS the large q data accumulate in the same
value fx�x� where x

max=Dx and fx=−��x−1�Dx. However,
for probability distribution showing the multifractal scaling
there is no accumulation point and fx�x� points shift pro-
gressively down as the parameter q is increasing and the
parameter q approaches Dx. This fact is utilized as a simple
criterion to recognize which probability distributions show
either multifractal scaling or FSS �12�. The equality
fa

min�a ,c�� fs
min�s ,c� is considered to be an attribute that

probability distributions P�x� show FSS. To test this equality
the differences �f�c� defined as �f�c�= fa

min�a ,c�
− fs

min�s ,c� were determined. The equality �f�c��0 is con-
sidered for true if �f�c�
0.10 which reflects numerical er-
rors. The differences �f�c� are shown in Fig. 4 where the
hatched area limits the region where the equality is true and
thus the avalanche probability distributions P�x� show FSS
behavior. It is clearly evident that only one value of �f�c� at
the density c=0, is outside the region �f�0��0.10, and it
corresponds to multifractal scaling of the BTW model
�11,12�. We have no data from the interval of densities 0
�c�0.01 and thus we may only expect that a crossover
from multifractal to FSS takes place in this interval.

The fx�x ,c� spectra enable us to determine the capacity
fractal dimensions Dx�c� as Dx�c�=x

max�c�. The results Dx�c�
for densities 0
c
1 are shown in the Fig. 5. For the BTW
model Ds�0�=2.88±0.025 and Da�0�=2.02±0.025, and for
the Manna model Ds�1�=2.77±0.025 and Da�1�
=2.03±0.025 were found. The avalanche area capacity frac-
tal dimensions Da�c� are almost constant Da�c��2, for any

FIG. 3. �Color online� The extrapolated spectra of the avalanche
area a and avalanche size s for various densities of Manna toppling
sites: �a� c=0 BTW model, which shows multifractal scaling, �b�
c=0.01 at which the multifractal scaling of BTW model is de-
stroyed, and �c� c=0.95 where the model shows the FSS near the
two-state Manna model �c=1�. The maximal error bars of f� ,c�
are for q�0, and are approximately ±0.05, but for a higher q they
are smaller. The  values are determined within errors ±0.025.

FIG. 4. �Color online� A crossover from multifractal scaling to
finite size scaling takes place at 0�c�0.01. The hatched area bor-
der an interval of �f�c� in which �f�c��0 and probability distri-
butions P�x� show finite size scaling. We note that �f�c�
= fa

min�a ,c�− fs
min�s ,c�.
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density c, and Da�0��Da�1�. In the interval of densities
0.01�c�0.15 the avalanche size dimension Ds�c� is de-
creasing from Ds�0.01�=2.90 to the value Ds�0.15�=2.78
and is then almost constant for c�0.15, finally Ds�0�
�Ds�1�.

The moment analysis method �12� was used to clarify
interesting properties of the scaling exponents �x,L→��c�
which are shown in Fig. 1. The values of the functions
fx

min�c� and Dx�c� �Fig. 5� are determined from the fx�x ,c�
plots. For specific densities c=0 �the BTW model� and c
=1 �the Manna model� fa

min�0�=−0.43±0.05 and fs
min�1�=

−0.784±0.05 were found. Then the scaling exponents are
given �x�c�=1− fx

min�c� /Dx�c� and are shown in the Fig. 6.
For the density c=0, it was found �a�0�=1.213±0.0125. For
the densities 0.01
c
0.15, the exponents decrease from
�a�0.01�=1.441±0.0125 and �s�0.01�=1.329±0.0125 to the
values �a�0.15�=1.394±0.0125 and �s�0.15�=1.299±0.0125,
which are subsequently constant for c�0.15. For the density
c=1, they are �a�1�=1.386±0.0125 and �s�1�
=1.297±0.0125. These results are similar to those deter-

mined directly from the distribution functions P�x�
x−�x

�Fig. 1�.

IV. DISCUSSION

The plots of �x,L vs 1/ ln L and an approximation given by
Eq. �7� were used to extrapolate scaling exponents �x,L→�

�6,17�. Lübeck and Usadel �6� have analyzed an influence of
an uncertainty in the determination of the exponents �x,L on
the precision of the extrapolated exponents �x,L→�. Their re-
sults show that this method is not very accurate. However,
this approximation enables us to make a comparison of our
results with previous ones. The scaling exponents of the
BTW model �a,L→��0�=1.26 and �s,L→��0�=1.23 �Fig. 1� are
approximately the same as those found in Ref. �6� ��a
=1.258 and �s=1.247� using the same method. The expo-
nents of the Manna model �a,L→��1�=1.36, and �s,L→��1�
=1.27 are comparable with the previous results, �s,L=1024
=1.28±0.02 �2� and with �a=1.373 and �s=1.275, which
were found by direct determination of exponents �6� or cal-
culated from the moment analysis �a�1.36 and �s�1.28
�18�. The results obtained by the moment analysis �12�,
fa

min�0�=−0.43±0.05 and fs
min�1�=−0.784±0.05, agree well

with the previous results, �a=−0.391±0.011 and �s=
−0.7900±0.002 �18�. We may conclude that the experimental
data for two known densities, c=0 and 1, and data analysis
methods give approximately the same exponents as were
found in previous numerical experiments �2,6,18�.

The scaling exponents defined by Eq. �6� �3� and the con-
ditional exponents �xy �7,19� can characterize the sandpile
models. The theory predicts �s=1.253 �4� and a few numeri-
cal experiments show Ds�2.7 and Da�2 �4,10�. The con-
ditional exponents �sa determined directly from the numeri-
cal experiments are �sa�0�=1.06 and �sa�1�=1.23 �7�.

Let us assume that the BTW and Manna models belong to
the same universality class. Then the scaling exponents
�x�c� ,Dx�c� �Eq. �6� of the model �Eqs. �2�–�5�� must be
independent on the density c, i.e. �x�c�=const. and Dx�c�
=const. This means that knowing only the scaling exponents
��x�c� ,Dx�c��, we could not distinguish how many sites are
toppling by deterministic or stochastic manner �Eq. �5��.

We observed that the capacity fractal dimensions Da�c� is
constant for any density c, Da�c��2. The capacity fractal
dimension Ds�0�=2.88 is the same as was found in Ref. �12�,
Ds�2.86 �determined from the Fig. 1�a� in Ref. �12��. Our
capacity fractal dimension Ds�1�=2.77 is higher than the
value D�2.7 �2,10�, however, it is closer to the D�2.75
�13�. In addition, for densities 0.01
c
0.1, the scaling ex-
ponents �x,L→��c�, �x�c� �Figs. 1 and 6� and Ds�c� �Fig. 5�
depend on the density c. These scaling exponents and capac-
ity fractal dimension are not constant. They demonstrate that
the assumption about a single universality class is wrong and
thus confirm the existence of different universality classes.

The conditional scaling exponents �xy �19� can be deter-
mined as �xy�c�= ��y�c�−1� / ��x�c�−1� �18�. Substituting the
known scaling exponents �x�c� �Fig. 6�, we determined
�sa�0.01��1.34 and for the Manna model, �sa�1��1.29. We
note that the scaling exponent �s�0� does not really exist.

FIG. 5. �Color online� The capacity fractal dimensions Dx=a,s�c�
as functions of the density c. The error bars are ±0.025.

FIG. 6. �Color online� The scaling exponents were determined
using �x�c�=1− fx

min�c� /Dx�c�, for the moment analysis all ava-
lanches where a�50 were taken into account.
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To determine the exact scaling exponents of the probabil-
ity distribution functions P�x�, the experimental data must
show a power-law dependence given by Eq. �6�. However,
the avalanche area size distributions P�a� do not follow ex-
actly power-law distributions for densities 0�c
0.1 in the
whole range of avalanche area sizes, a typical example is
shown in the Fig. 2. Chessa et al. �10� found that the area
size distribution P�a� of the BTW model �c=0� is not com-
patible with the FSS hypothesis in the whole range of ava-
lanches. However, for large size of avalanches the FSS form
must be approached. They assume that the scaling in the
BTW model needs subdominant corrections of the form
P�x�= �C1x−�1 +C2x−�2 + ¯ �F�x /xc�, where Ci are nonuniver-
sal constants and that these corrections do not determine uni-
versality class. The asymptotic scaling behavior is deter-
mined by the leading power law. We assume that the
deviation from a simple power-law for densities 0�c
0.1
�Sec. III� could be explained by this correction. We observed
that the exponents for large avalanches a are larger than the
approximate exponents ��a,L=1024=1.23 in the Fig. 2� which
cover the whole range. As a consequence, the leading expo-
nents �a,L�c� for densities 0�c�0.1 are higher than the ap-
proximate exponents which we found �they are not shown in
the Fig. 2 for 0�c
0.09�. It is evident that the leading
scaling exponents �a,L are different and are not constant �Fig.
1� as in the case of the BTW model or the Manna model and
thus the model for these densities belongs to a different class
than the BTW model or the Manna model.

Divergences from the expected power-law behavior of the
BTW model and a need of subdominant correction were ob-
served in another inhomogeneous sandpile model �15�. Here
the avalanche dynamic was disturbed by sites which had the
second higher threshold. The effect was significant for
thresholds EC�32 and low concentration of such sites �15�.

The multifractal properties �Fig. 3� of the model given by
Eqs. �1�–�5� for the density c=0 �the BTW model�, and FSS
for the density c=1 �the Manna mode� agree well with the
recent results �12�. In addition, the crossover from multifrac-
tal to FSS was observed in the Fig. 4. Our results can only
predict that a critical density is expected to be found in the
interval of densities 0�c�0.01 �Figs. 3 and 4�. This interval
is five times smaller than what was found in Ref. �13� where
the results are based on the autocorrelation function of the
avalanche wave time series �20�.

We assume that divergences from power-law dependences
in inhomogeneous conservative models, �15� and Eqs.
�1�–�5�, have a common reason which is connected to the
crossover from multifractal scaling to FSS �13�. In both
models a disorder is induced by deployment of disturbing
sites. These disturbing sites either increase the short range
coupling during relaxations in deterministic model �15� or
introduce the random toppling �Eq. �5��. In these models
toppling imbalance �13,14� only for a few such sites can
change character of waves in the models from coherent to
more fragmented waves �7–9,12�.

In this study, the multifractal properties of the BTW
model which is initially homogeneous, are destroyed at very
low concentrations of such disturbing sites. In the opposite
case, the Manna model shows the FSS and resistance to dis-

turbance caused by presence of BTW sites because all sig-
nificant exponents from Eq. �6� are approximately constant
in a broad range of densities 0.15
c
1. One possible ex-
planation for this is that the nature of the small perturbation
of the model is not the same when we perform changes
around the densities at c=0 and c=1. A small perturbation of
the dynamical rules of the BTW model �c=0� breaks the
toppling symmetry �13� and this may explain why the
changes in the scaling exponents �x�c� and capacity fractal
dimension Ds�c� are so unexpected. On the other hand, for
the Manna model �c=1�, decreasing of the density c cannot
influence the unbalanced toppling symmetry of the Manna
model �13�. For sandpile models which show FSS this is an
expected result and agrees well with the theory �4,10�, where
a small modification of toppling rules cannot change the
scaling exponents.

We can clearly identify two universality classes which
correspond to the classes proposed in papers �7� or �13�: �a�
nondirected models, for density c=0 �BTW model, the mul-
tifractal scaling �5,11,12��, and they show a precise toppling
balance �13� and they are sensitive on disturbance of ava-
lanche dynamics, �b� random relaxation models, for densities
0.1�c�1 where FSS of P�x� is verified, they are nondi-
rected only on average �Manna two-state model c=1 �7��. In
these models breaking of the precise toppling balance �13� is
observed, the scaling exponents are resistant to disturbance
of avalanches. The classification for densities 0�c�0.1 is
not so clear. If we follow the proposed classifications then
the model is a random relaxation model �7� with broken
precise toppling balance �13� and it belongs in the same class
as the Manna model. On the other hand, the scaling expo-
nents differ from the Manna model and they are not universal
��x�c��const., Ds�c��const.�, and the reasons of the sub-
dominant approximation of area probability distribution
functions �10� can play an important role. We assume that a
universality class between the BTW �c=0, multifractal scal-
ing� and the Manna �c�0.5, FSS� classes �13,14� could be
identified for densities 0�c�0.1. However, a more detailed
study is necessary to verify this classification.

Our additional arguments to the previous results
�5–9,13,15� show that small modifications of the dynamical
rules of the model can lead to different universality classes
what is considered to be unusual from a theoretical stand-
point �10�.

V. CONCLUSION

In these computer simulations multifractal scaling of the
BTW model �11� and FSS of the Manna model �12� were
confirmed. In addition, a crossover from multifractal scaling
to FSS �13� was observed when avalanche dynamics of the
BTW model was disturbed by Manna sites which were ran-
domly deployed in the lattice, as their density was increased.
This crossover takes place for a certain density c in the in-
terval 0�c�0.01. This interval is five times smaller than
what was found recently �13�. The scaling exponents �x�c�
and the capacity fractal dimension Ds�c� are not constant for
all densities c which is necessary if the models �1,2� belong
to the same universality class. These result agree well with

JOZEF ČERNÁK PHYSICAL REVIEW E 73, 066125 �2006�

066125-6



the previous conclusions that multifractal properties of the
BTW model �5,11,12�, toppling wave character �7–9� and
precise toppling balance �13,14� are important properties for
solving the universality issues.

An open question remains about how to characterize the
universality class for densities 0.01�c�0.1, where the scal-
ing exponents are not universal ��x�c��const. and Ds�c�
�const.� and in addition, the avalanche probability distribu-
tions P�a� do not show exact power-law behavior since the
subdominant corrections of P�a� �10� are important. In this
interval of densities c, our model belongs to the random re-
laxation models �7� and to the models with unbalanced top-
pling sites �13,14�, however, its scaling exponents are not
equal to the exponents of the Manna model.

Based on the previous findings �13,14� and our results we
assume that the avalanche dynamics of undirected conserva-
tive models, in which some of the probability distribution

functions show a multifractal scaling �the BTW model�, is
disturbed by suitable toppling rules which are different from
the two-state Manna model �for example a stochastic four-
state Manna model �7,9��, then a local manner for the energy
distribution during the relaxation can be important and can
change the scaling exponents. However, the models which
show the FSS for all probability distribution functions �the
Manna model� are not sensitive to the details of the toppling
rules and are consistent with theoretical predictions �4,10�.
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